MAC 工法

支承の腐食•劣化は進んでいます。

従来，橋梁支承部の主材料としては鉄かゴム等が用いられており，これらの材料は車両交通や環境等 による腐食や経年劣化が生じた状態のまま，台座の大きな損傷と合わせて放置供用されている事例が数多く見られます。
－橋梁支承部の損傷状況

このような状況を放置しておくと

供用しながら損傷している支承を取替え，延命化を図ることが可能です！！
MA
（多機能高耐久コンクリート沓エ法）
－ジャッキアップエ法ではなく，機械式仮受け装置を使用高強度 高耐久コンクリートを使用
－変位制限•段差防止及び落橋防止構造等の落橋防止システム機能を付加

供用しながら損傷している支承を取替え，延命化を図る技術です。

安全性と施工性の向上

ジャッキアップを行なわないことによる安全性の向上
－桁の仮受けに必要な 10 エ程のうちジャッキアップおよびジャッキダウ ンの 2 エ程の省略
－施工時における交通規制が不要（ジャッキアップをしないため段差が生じない）
－既設橋梁が損傷している可能性もあるため，ジャッキアップをして不利 な圧力をかけない

機械式仮受け装置での仮受けの施工性
－実物大供試体による施工実験における，なじみに よる沈下は 1 mm 以下を確認
－機械式仮受け装置の解放 は，ネジの回転数で管理 でき 1 ミリ単位の解放が容易に行える

既設構造物の安全性
－橋座の鉄筋位置まではつることから，既設の鉄筋を損傷することなくア ンカーボルト孔の確実な削孔が可能である

耐久性と維持管理性の向上

使用材料による耐久性の向上
－高強度コンクリート $(W / \mathrm{C}=40 \%, \delta 3=24 \mathrm{~N} / \mathrm{mm} 2$ 以上，$\delta 28=50 \mathrm{~N} / \mathrm{mm} 2$ 以上）を使用することから，普通コンクリートより腐食環境に対する劣化速度が遅 く耐久性に優れる
－自己充填性【スランプフロー試験（フロー値： $650 \pm 50 \mathrm{~mm}$ ， 50 cm 到達時間： 5 ～20秒），Vロート試験（流下時間：9～20秒】を有していることから密実な コンクリートとなる
－混和材としてフライアッシュを使用することから，コンクリートの発熱温度を約 $8.5^{\circ} \mathrm{C}$ 低減し，ひび割れを抑制できる

構造上による耐久性の向上
－橋座面の主鉄筋まで一体とする構造であることから，上部工反力による支圧応力度を約 50% に低減できる

経済性の向上
施工費の内訳（直接工事費）

設計荷重B活荷重	本工法	従 来工法	備	考
（1）支承材料費	988千円	357 千円		176\％増加 会
（2）支承取替手間	1，739千円	3280 千円		47\％縮減 三
（3）小 計	2，727千円	3，637千円	（1）＋2）	26\％縮减
（4）橋座補修工	392 千円	395 千円		2% 縮減
（5）変位制限構造工	388 千円	213 千円		82\％増加 会
（6）小 計	3，507千円	4，245千円	（3）＋（4）＋（5）	18\％絔減
（7）足場等仮設費 （主杯補強含む）	853千円	853千円		共 通
（8）合 計	4，360千円	5，098千円	（6）＋7）	16\％縮減 ${ }^{\text {F }}$

※RCT析（5 主析）橋梁での例

施工実績

発注者	橋梁名	構造型式	支間割	工事年度
国土交通省九州地方整備局	大浦橋	RC単純T析橋	7.4 m	平成18年度
国土交通省九州地方整備局	1号橋	鋼単純I桁橋	19.0 m	平成18年度
国土交通省九州地方整備局	砂田橋	RC単純T析橋	14.6 m	平成20年度

